FPGA-Technologie im industriellen Umfeld

HSR Vortragsreihe Elektrotechnik, 11. Mai 2010

André Schlegel, Enclustra GmbH
Marc Oberholzer, Enclustra GmbH
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
 - Market Overview
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Outlook & Trends
 - Targeted Design Platforms
 - CPU goes FPGA
 - FPGA Mezzanine Card
Content

- **Enclustra GmbH**
 - Company Profile

- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
 - Market Overview

- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC

- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA

- Example Project
 - Motion Control

- Outlook & Trends
 - Targeted Design Platforms
 - CPU goes FPGA
 - FPGA Mezzanine Card
Quick Facts
- Founded in 2004
- Located at Technopark Zurich
- Currently 6 FPGA Engineers
- Vendor-Independent

FPGA Design Center
- FPGA-Related Design Services
- Firmware (VHDL/Verilog)
- Hardware (incl. analog and digital interfaces)
- Embedded Software (for FPGA soft processors)

FPGA Solution Center
- FPGA Modules
 - Mars, Mercury and Saturn
- IP Cores
 - TFT Display Controller
 - Universal Drive Controller
 - Etc.
Mars MX1/MX2 FPGA Module

- Low-cost, low-power Spartan-6 FPGA
- SO-DIMM form factor
- Single supply voltage
- 16 MB quad SPI Flash
- 256 MB DDR2 SDRAM
- Dual Fast Ethernet (MX1 only)
- Real time clock (MX1 only)
- Gigabit Ethernet (MX2 only)
- Dual multi-gigabit transceivers (MX2 only)
- PCIe endpoint (MX2 only)
Mercury CA1 FPGA Module

- Low-cost Cyclone IV FPGA
- Single supply voltage
- 16 MB SPI Flash
- 256 MB DDR2 SDRAM
- Gigabit Ethernet PHY
- USB 2.0 High-Speed interface
- High-power 8A core power supply
Enclustra GmbH

Company Profile

FPGA Basics
- FPGA Architecture
- FPGA Design Flow
- Market Overview

The Case for FPGAs
- Unique Selling Points
- FPGA vs. ASIC
- FPGA vs. DSP
- FPGA vs. uC

Real-World FPGA Applications
- Software Defined Radio
- Linux on FPGA

Example Project
- Motion Control

Outlook & Trends
- Targeted Design Platforms
- CPU goes FPGA
- FPGA Mezzanine Card
- **Field Programmable Gate Array**
- Regular array of configurable logic blocks
- Embedded RAM blocks
- DSP blocks
- Configurable I/O blocks
- Dedicated clock management blocks
- Connected through configurable routing resources
 - Global routing (long, fast, few lines)
 - Local routing (short, abundant)
- Switch boxes
- Configuration data stored in distributed SRAM cells
- LUTs are used for implementing logic functions
 - 1-4 input functions in a single LUT
 - LUT trees or carry chain architectures for more complex logic functions
 - LUTs are in fact small SRAMs
- FFs are used for storing data and for pipelining
 - Increasing logic levels result in increased propagation time
 - Routing delay is dominant over LUT delay
 - Pipelining helps to break long paths
 - FFs are expensive in ASICs but are cheap in FPGAs
 - Up to 500 MHz for real-world designs
- ~1500 .. 950'000 (1.5 Mio) per FPGA
DSP blocks are used to implement fixed-point arithmetic operations
- Typically 18 x 18 bit multiplier
- 48 + 48 bit adder/accumulator
- Pre-adder for symmetric FIR filters
- Dynamic configuration via OPMODE
- Highly pipelined (configurable)
- Up to 600 MHz clock frequency
- Support for carry and adder chains
- ~4 .. 2000 (3600) per FPGA
- Up to 1200 (2160) GMAC/s per FPGA!!!
Memory Blocks are used to implement:

- Simple data storage
- Shared memory
- Synchronous/asynchronous FIFOs
- Configurable large delays
- ROM (content is part of FPGA bitstream)
- Data tap / coefficient storage for FIR filters
- Program/data memory for embedded soft processors

Widely configurable in:

- Width/depth aspect ratio
- Size (cascadeable)
- Read behaviour (registered/combinatorial)

Granularities from 512 bit to 36 Kbit

72 kbit .. 38 Mbit per FPGA
- I/O blocks are used to interface to the outside world
 - Highly configurable in
 - Direction (input, output, bidirectional)
 - Data rate (SDR, DDR, SERDES)
 - I/O standard (single-ended, differential, referenced, etc.)
 - I/O voltage (1.2 V .. 3.3 V for single-ended standards)
 - FFs in the I/O block guarantee a stable I/O timing
 - ~100 .. 1200 per FPGA
Hard macro blocks provide complex functions like:

- Embedded processor cores (PowerPC, ARM, etc.)
- External memory controllers (DDR, DDR2, DDR3, QDR, QDR II, etc.)
- Triple-speed Ethernet MACs
- Multi-gigabit serial transceivers
- PCI-Express endpoints
- Etc.

Even low-cost FPGAs provide some hard macro blocks today

- No hard macro CPU in low-cost FPGAs so far
- Embedded processor core implemented with FPGA logic, DSP and memory blocks
- Highly configurable
 - Starting with an ultra-simple 8-bit uC core
 - Ending with 32-bit RISC CPUs including FPU and MMU, capable of running a desktop Linux distribution
- Enables SoPCs with low-cost FPGAs
 - System on a Programmable Chip
 - Single-chip solution, uC and legacy peripheral ICs are replaced by FPGA logic resources
Architectural design is vital for
- System performance
- Resource usage
- Timing closure
- Power consumption

HDL: **Hardware** Description Language

Only strict synchronous design practices lead to reliable FPGA systems!
Xilinx and Altera share the high-performance FPGA market as well as the major part of the low-cost FPGA market.

Lattice Semi is a traditional player in the low-cost FPGA and CPLD market.

Actel provides Flash-based, low-power, mixed-signal and space-qualified FPGAs.
Industrial applications are dominant in Switzerland.

There is also some significant activity in the communications sector in Switzerland.
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
 - Market Overview
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Outlook & Trends
 - Targeted Design Platforms
 - CPU goes FPGA
 - FPGA Mezzanine Card
The Case for FPGAs – Unique Selling Points (1)

- Real parallel processing
 - Vast parallel processing power for DSP applications
 - No conflicts in accessing shared resources (because there aren’t any...)

- Hard real-time capabilities
 - No operating system, no scheduler, no IRQ latency, only pure hardware
 - Nanosecond time resolution (e.g. 200 MHz FPGA clock frequency -> 4 ns cycle time)

- High integration and customization potential
 - Single-chip systems with standard and custom parts
The Case for FPGAs – Unique Selling Points (2)

- Reconfiguration / remote update capability
 - Configuration can be changed over and over again
 - Allows early system tests on hardware instead of time-consuming simulations
 - Deployed systems can be updated in the field, e.g. over the internet
 - Therefore often used as configurable external I/O

- Long-term availability
 - Devices are usually available for > 10 years
 - System functionality is defined by HDL code rather than by hardware schematics
 - HDL code is easily ported to a new FPGA generation (no change to embedded processor code)
FPGAs can’t beat ASICs when it comes to
 - Low power
 - Ultra small form factor
 - Ultra high design security
 - Ultra high volume
ASICs need volume to overcome the NRE penalty
 - NRE increase with each process shrink
 - FPGA logic gets cheaper with each process shrink
 - The break-even is moving towards higher volumes with each process shrink
Remote update and faster time to market become more and more important
 - FPGAs gain ground in the ASIC domain
FPGAs are often used for ASIC prototyping
The Case for FPGAs – FPGA vs. DSP

- DSPs are widely used in low-cost, low-power and low-to mid-performance systems
- DSPs suffer from their serial instruction stream when it comes to more complex systems running at high sample rates
- FPGAs can provide a performance boost of 10..1000 compared to DSPs for such applications (e.g. software defined radio).
- FPGAs even excel when compared in MAC/$ and MAC/W.
- Hard-macro CPU cores in the FPGAs take over traditional DSP tasks (e.g. complex protocol stacks), enabling single-chip high-performance signal processing systems
“Microcontrollers are cheap and energy-efficient, FPGAs are expensive and power-consuming”

- If a microcontroller can do it, there is usually no need for a FPGA

- SoPC designs with FPGA-internal soft processors are beneficial if
 - The system requires a FPGA anyway
 - Many external ICs would be needed along with a microcontroller
 - PCB space is a major concern
 - High design flexibility is required
 - Long-term availability is a major concern
 - Reduced part count
 - BSP defined through VHDL-code
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
 - Market Overview
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Outlook & Trends
 - Targeted Design Platforms
 - CPU goes FPGA
 - FPGA Mezzanine Card

Enclustra GmbH
● Software defined radio
 ● Most of the signal processing of a RF receiver/transmitter is done in „software”

● Real-world application
 ● 2.4 GHz RF receiver
 ● 240 Msps sampling rate
 ● Down conversion to 40 channels at 2 MspS each
 ● Parallel baseband-processing of all 40 channels with a time division multiplexed datapath architecture
 ● Channel filters
 ● Demodulators (FSK, PSK)
 ● Spartan-3A DSP low-cost FPGA
 ● 126 multipliers running at 240 MHz clock frequency
Real-World Applications – Linux on FPGA

- FPGA SoPC demonstrator
 - TFT display with touch function
 - PS/2 keyboard
 - Gigabit Ethernet (TCP/IP)
 - Stepper motor controller
 - 32-bit RISC CPU running Linux 2.6
 - GUI based on Nano-X
 - Everything in a single low-cost FPGA (Xilinx Spartan-3A DSP on an Enclustra Saturn SX1 FPGA module)

- Linux provides user I/O, networking and a well-known application development platform
- FPGA logic provides custom functions
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
 - Market Overview
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- **Example Project**
 - Motion Control
- Outlook & Trends
 - Targeted Design Platforms
 - CPU goes FPGA
 - FPGA Mezzanine Card
Example Project – Motion Control Specification

- **Technical requirements:**
 - Motion control module
 - Up to 4 DC or 2 stepper motors
 - Up to 2 BLDC motors in a later stage
 - CAN interface
 - Trajectory planner/integrator
 - All calculations in SI units
 - 1..5 KHz position/velocity control
 - 10..100 KHz current control
 - 4 integrated FET H-bridges
 - Credit-card size

- **General information:**
 - Motion control platform for next-generation products
 - High-volume (> 10’000 units/year)
 - Must comply with various engineering standards

- **Commercial requirements:**
 - Manufacturing costs < X $
 - Available no later than day Y
 - Engineering costs are secondary
Example Project – Motion Control Project Setup

- General project setup:
 - The customer is responsible for hardware design, production and embedded software
 - Enclustra is responsible for FPGA firmware and FPGA-related system design issues

- Team setup at Enclustra:
 - 1 project manager
 - 1 FPGA firmware engineer
 - 1 hardware consultant

- Team setup at the customer:
 - 1 project manager
 - 2 embedded software engineers
 - 2 hardware engineers
 - The strategic procurement department
 - The upper management
 - Many potential users of the motion control module
Example Project – Motion Control Project Schedule (Basic Functions)

- System Design
- Hardware Support
- Hardware Design / Schematics / Layout
- Hardware Production
- FPGA Firmware
- Embedded Software
- Bring-Up, Integration & Test

Kick-Off
System Design Freeze
Schematics Freeze
Layout Freeze
First Prototypes
Customer Acceptance

Customer Enclustra 3rd Party
Example Project – Motion Control System Design (1)

Altera Cyclone III FPGA

- SPI Master
- CAN IP Core
- Nios II CPU with FPU
- Register Bank
- Shared Memory
- Nios II DSP with FPU
- DC Motor Controller
- Stepper Motor Controller

Communication, configuration, trajectory planning, I/O handling
Trajectory integration, position and velocity controllers
Current sensing and current controllers, commutation, PWM generation
Example Project – Motion Control

First Prototypes!

- **Bring-Up**
 - Power, clocks, FPGA configuration
 - Nios II booting and JTAG communication
- **First tests on hardware**
 - The first logged move!
Example Project – Motion Control
Next Steps

- In-System testing at the customer’s site
 - Bugfixes
 - Small improvements
 - First ideas for new features
- First release to internal users
 - More bugfixes
 - More small improvements
 - More ideas for new features
- Customer acceptance for basic functionality on schedule

- New feature wishlist
 - BLDC motor: Field oriented control (FOC) instead of block commutation
 - BLDC motor behaves like a DC motor
 - Resource-consuming
 - Versatile I/O handler with interrupt support
 - Big muxes -> resource consuming
 - Power outputs with custom waveforms generated in FPGA logic
 - 6 times -> resource-consuming
 - Additional custom functionality
 - Much more configurable parameters
 - Growing register bank
Example Project – Motion Control
FPGA Resources over Time

FPGA Resources over Time

FPGA Resources

FPGA Resource Limit

New Features

More New Features

Basic Functions

Small Improvements

BLDC Motor (FOC)

Time
Example Project – Motion Control Conclusions

- **FPGA-based systems allow step-by-step introduction of new features**
 - FPGA projects require a thorough change management
 - Request, classification, design, approval, implementation, verification, release
 - FPGA projects require a strict release management
 - Define specific feature sets for planned releases and stick to it
 - Build number, build date and time, release number, accurate release history
- **Resource usage and power consumption must always be monitored**
 - Device migration over different densities (assembly option) is possible, but complicates the initial hardware design
 - Power consumption is highly dependent on the FPGA design (resource usage, clock frequencies, etc.) and the system operating conditions (data toggle rates, etc.)
Make or buy – the case for outsourcing FPGA development

Successful and efficient FPGA design requires in-depth knowledge of:

- Basic digital and analog circuit design, chip design, VLSI
- HDL (VHDL/Verilog/etc.), FPGA architecture and tools
- High-speed hardware design
- Deployed algorithms, I/O standards, protocols, etc.

Many companies have extensive knowledge in their application area, but do not have the required expertise for successfully employing FPGA technology

- Building up FPGA know-how is a lengthy and expensive process
- Collaboration between application specialists and FPGA technology experts shows great promise for successful product development
Enclustra GmbH

- Company Profile

FPGA Basics
- FPGA Architecture
- FPGA Design Flow
- Market Overview

The Case for FPGAs
- Unique Selling Points
- FPGA vs. ASIC
- FPGA vs. DSP
- FPGA vs. uC

Real-World FPGA Applications
- Software Defined Radio
- Linux on FPGA

Example Project
- Motion Control

Outlook & Trends
- Targeted Design Platforms
- CPU goes FPGA
- FPGA Mezzanine Card
Outlook and Trends – Targeted Design Platforms

- Enable designers to focus on innovation rather than on infrastructure by the help of
 - Advanced FPGA silicon
 - Socketable IP cores
 - Development boards
 - Reference designs
- Base IP and tools provided by silicon vendor for free (e.g. SPI)
- Domain-specific IP and tools provided by silicon vendor and design partners (e.g. FFT)
- Market-specific IP and tools provided by design partners and 3rd parties (e.g. video deinterlacer)
- Application-specific boards and FPGA designs done by the end customer
Outlook and Trends – CPU goes FPGA

- CPU goes FPGA (not FPGA goes CPU)
- Xilinx Extensible Processing Platform
 - ARM Dual Cortex-A9 @ 800 MHz
 - Memory interfaces and common peripherals as hard macros
 - Programmable logic custom peripherals and accelerators
 - High-bandwidth interconnect between CPU, peripherals and accelerators
 - Partial reconfiguration of programmable logic via CPU
- Fixed processing system
- Scalable programmable logic
- Broad range of available IP
- Software-centric development flow
Outlook and Trends – FPGA Mezzanine Card (FMC)

- PMC, XMC & Co. allow flexible I/O interfaces for traditional single-board computers
- Providing flexible I/O interfaces for FPGA-based processing boards is a different story
- The FPGA Mezzanine Card (FMC) standard is addressing this issue
 - 160 (LPC) or 400 (HPC) pin connector, up to 10 Gb/s
 - Standardized connector pin assignments optimized for FPGAs

- Possible applications
 - Different RF frontends for FPGA-based software defined radio systems
 - Various I/O engines for a single FPGA-based processing board
Questions?

André Schlegel
Enclustra GmbH
[Email] schlegel@enclustra.com
Fon +41 43 343 39 46

Marc Oberholzer
Enclustra GmbH
[Email] oberholzer@enclustra.com
Fon +41 43 343 39 47

Slides in PDF format:
http://www.enclustra.com/de/company/publications/