FPGA-Technologie im industriellen Umfeld

Embedded Computing Conference, 30.8.2011, ZHAW Winterthur

Marc Oberholzer
Enclustra GmbH
FPGA Design Center
Content

- Enclustra GmbH
 - Company Profile
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - „Featuritis“
 - Outsourcing
 - How to Stand Out
Content

- **Enclustra GmbH**
 - Company Profile
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - „Featuritis“
 - Outsourcing
 - How to Stand Out
Quick Facts

- Founded in 2004
- Located at Technopark Zurich
- Currently 7 employees
- Vendor-Independent

FPGA Design Center

- FPGA-Related Design Services
- Firmware (VHDL/Verilog)
- Hardware (incl. analog and digital interfaces)
- Embedded Software (for FPGA soft processors)

FPGA Solution Center

- FPGA Modules
 - Mars, Mercury and Saturn
- IP Cores
 - TFT Display Controller
 - Universal Drive Controller
 - Etc.
Content

- Enclustra GmbH
 - Company Profile

- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC

- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA

- Example Project
 - Motion Control

- Conclusions
 - Field Update
 - „Featuritis“
 - Outsourcing
 - How to Stand Out
The Case for FPGAs – Unique Selling Points (1)

- Real parallel processing
 - Vast parallel processing power for DSP applications
 - No conflicts in accessing shared resources (because there aren’t any...)

- Hard real-time capabilities
 - No operating system, no scheduler, no IRQ latency, only pure hardware
 - Nanosecond time resolution (e.g. 200 MHz FPGA clock frequency -> 5 ns cycle time)

- High integration and customization potential
 - Single-chip systems with standard and custom parts
The Case for FPGAs – Unique Selling Points (2)

- Reconfiguration / remote update capability
 - Configuration can be changed over and over again
 - Allows early system tests on hardware instead of time-consuming simulations
 - Deployed systems can be updated in the field, e.g. over the internet
 - Therefore often used as configurable external I/O

- Long-term availability
 - Devices are usually available for > 10 years
 - System functionality is defined by HDL code rather than by hardware schematics
 - HDL code is easily ported to a new FPGA generation (no change to embedded processor code)
FPGAs can’t beat ASICs when it comes to
- Low power
- Ultra small form factor
- Ultra high design security
- Ultra high volume

ASICs need volume to overcome the NRE penalty
- NRE increase with each process shrink
- FPGA logic gets cheaper with each process shrink
- The break-even is moving towards higher volumes with each process shrink

Remote update and faster time to market become more and more important
- FPGAs gain ground in the ASIC domain
- FPGAs are often used for ASIC prototyping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FPGA</th>
<th>ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Power consumption</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Form factor</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Design security</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Reconfiguration</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Redesign risk (weighted)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>NRE</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Time to market</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Total Cost FPGA vs. ASIC
- DSPs are widely used in low-cost, low-power and low- to mid- performance systems
- DSPs suffer from their serial instruction stream when it comes to more complex systems running at high sample rates
- FPGAs can provide a performance boost of 10..1000 compared to DSPs for such applications (e.g. software defined radio).
- FPGAs even excel when compared in MAC/$ and MAC/W.
- Hard-macro CPU cores in the FPGAs take over traditional DSP tasks (e.g. complex protocol stacks), enabling single-chip high-performance signal processing systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FPGA</th>
<th>DSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>System performance</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multi-channel architecture</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Many operations per sample</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Many conditional operations</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Floating point</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Absolute power consumption</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Performance FPGA vs. DSP

<table>
<thead>
<tr>
<th>Operations per Sample</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA Domain</td>
<td>Divergence</td>
</tr>
<tr>
<td>DSP Domain</td>
<td>Convergence</td>
</tr>
</tbody>
</table>

Trend
The Case for FPGAs – FPGA vs. uC

- "Microcontrollers are cheap and energy-efficient, FPGAs are expensive and power-consuming"
 - If a microcontroller can do it, there is usually no need for an FPGA
- SoPC designs with FPGA-internal soft processors are beneficial if
 - The system requires an FPGA anyway
 - Many external ICs would be needed along with a microcontroller
 - PCB space is a major concern
 - High design flexibility is required
 - Long-term availability is a major concern
 - Reduced part count
 - BSP defined through VHDL-code
Content

- Enclustra GmbH
 - Company Profile
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- **Real-World FPGA Applications**
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - „Featuritis“
 - Outsourcing
 - How to Stand Out
Software defined radio
- Most of the signal processing of a RF receiver/transmitter is done in “software”

Real-world application
- 2.4 GHz RF receiver
- 240 Msps sampling rate
- Down conversion to 40 channels at 2 Msps each
- Parallel baseband-processing of all 40 channels with a time division multiplexed datapath architecture
 - Channel filters
 - Demodulators (FSK, PSK)
- Spartan-3A DSP low-cost FPGA
 - 126 multipliers running at 240 MHz clock frequency
 - Ported to Spartan-6 LX
 - TDM / Floorplanning
- FPGA SoPC demonstrator
 - TFT display with touch function
 - PS/2 keyboard
 - Gigabit Ethernet (TCP/IP)
 - Stepper motor controller
 - 32-bit RISC CPU running Linux 2.6
 - GUI based on Nano-X
 - Everything in a single low-cost FPGA (Xilinx Spartan-3A DSP on an Enclustra Saturn SX1 FPGA module)

- Linux provides user I/O, networking and a well-known application development platform
- FPGA logic provides custom functions
Enclustra GmbH

Company Profile

The Case for FPGAs
- Unique Selling Points
- FPGA vs. ASIC
- FPGA vs. DSP
- FPGA vs. uC

Real-World FPGA Applications
- Software Defined Radio
- Linux on FPGA

Example Project
- Motion Control

Conclusions
- Field Update
- „Featuritis“
- Outsourcing
- How to Stand Out

Enclustra GmbH
Example Project – Motion Control Specification

- Technical requirements:
 - Motion control module
 - Up to 4 DC or 2 stepper motors
 - Up to 2 BLDC motors in a later stage
 - CAN interface
 - Trajectory planner/integrator
 - All calculations in SI units
 - 1..5 KHz position/velocity control
 - 10..100 KHz current control
 - 4 integrated FET H-bridges
 - Credit-card size

- General information:
 - Motion control platform for next-generation products
 - High-volume (> 10’000 units/year)
 - Must comply with various engineering standards

- Commercial requirements:
 - Manufacturing costs < X $
 - Available no later than day Y
 - Engineering costs are secondary
Example Project – Motion Control Project Setup

- General project setup:
 - The customer is responsible for hardware design, production and embedded software
 - Enclustra is responsible for FPGA firmware and FPGA-related system design issues

- Team setup at Enclustra:
 - 1 project manager
 - 1 FPGA firmware engineer
 - 1 hardware consultant

- Team setup at the customer:
 - 1 project manager
 - 2 embedded software engineers
 - 2 hardware engineers
 - The strategic procurement department
 - The upper management
 - Many potential users of the motion control module
Example Project – Motion Control Project Schedule (Basic Functions)

- System Design
- Hardware Support
- Hardware Design / Schematics / Layout
- Hardware Production
- FPGA Firmware
- Embedded Software
- Bring-Up, Integration & Test

- Customer
- Enclustra
- 3rd Party

Kick-Off System Design Freeze Schematics Freeze Layout Freeze First Prototypes Customer Acceptance
Example Project – Motion Control System Design (1)
Example Project – Motion Control
First Prototypes!

- **Bring-Up**
 - Power, clocks, FPGA configuration
 - Nios II booting and JTAG communication
- **First tests on hardware**
 - The first logged move!

Graphs:
- **Position**
- **Velocity**
- **Acceleration**
Example Project – Motion Control
Next Steps

- In-System testing at the customer’s site
 - Bugfixes
 - Small improvements
 - First ideas for new features
- First release to internal users
 - More bugfixes
 - More small improvements
 - More ideas for new features
- Customer acceptance for basic functionality on schedule

- New feature wishlist
 - BLDC motor: Field oriented control (FOC) instead of block commutation
 - BLDC motor behaves like a DC motor
 - Resource-consuming
 - Versatile I/O handler with interrupt support
 - Big muxes -> resource consuming
 - Power outputs with custom waveforms generated in FPGA logic
 - 6 times -> resource-consuming
 - Additional custom functionality
 - Much more configurable parameters
 - Growing register bank
Example Project – Motion Control
FPGA Resources over Time

FPGA Resources over Time

FPGA Resources

- Basic Functions
- Small Improvements
- BLDC Motor (FOC)
- New Features
- More New Features

Time
Content

- Enclustra GmbH
 - Company Profile
- The Case for FPGAs
 - Unique Selling Points
 - FPGA vs. ASIC
 - FPGA vs. DSP
 - FPGA vs. uC
- Real-World FPGA Applications
 - Software Defined Radio
 - Linux on FPGA
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - „Featuritis“
 - Outsourcing
 - How to Stand Out
FPGAs allow fast market entry thanks to their field update capability

This often leads to the fallacy that FPGA development does not require thorough verification ("we can fix an error after it occurs")

- This might partly be true for non security relevant applications running in static ambient conditions
- FPGA development actually IS done like this a lot more than one might think
- This often wrongs FPGA technology in the user’s minds, because there WILL be errors in this case

The development of a reliable FPGA system does not get by without thorough verification!

- Verification may include behavioral simulation and tests running on the hardware
FPGA-based systems allow step-by-step introduction of new features

- FPGA projects require a thorough change management
 - Request, classification, design, approval, implementation, verification, release
- FPGA projects require a strict release management
 - Define specific feature sets for planned releases and stick to it
 - Build number, build date and time, release number, accurate release history
- Resource usage and power consumption must always be monitored
 - Device migration over different densities (assembly option) is possible, but complicates the initial hardware design
 - Power consumption is highly dependent on the FPGA design (resource usage, clock frequencies, etc.) and the system operating conditions (data toggle rates, etc.)
Conclusions – Outsourcing

- **Make or buy – the case for outsourcing FPGA development**
 - Successful and efficient FPGA design requires in-depth knowledge of
 - Basic digital and analog circuit design, chip design, VLSI
 - HDL (VHDL/Verilog/etc.), FPGA architecture and tools
 - High-speed hardware design
 - Deployed algorithms, I/O standards, protocols, etc.
 - Many companies have extensive knowledge in their application area, but do not have the required expertise for successfully employing FPGA technology
 - Building up FPGA know-how is a lengthy and expensive process
 - Collaboration between application specialists and FPGA technology experts shows great promise for successful product development
How can an FPGA engineering company stand out from the crowd?

- Focus on
 - FPGA technology (don’t be a „general merchandise store“)
 - Key application domains (e.g. DSP, SoPC, etc.)

- Provide solutions, not only engineering resources
 - FPGA modules as HW platform
 - IP cores for complex building blocks
 - Custom design for custom functionality
 - System integration

- Not only make the customer happy, but also make him successful
 - What the customer initially wants is most often not what he really needs
Marc Oberholzer
Enclustra GmbH
oberholzer@enclustra.com
Fon +41 43 343 39 47

Slides in PDF format:
http://www.enclustra.com/de/company/publications/