FPGA Technology and Industry Experience

Guest Lecture at HSLU, Horw (Lucerne)

May 24 2012

Oliver Bründler, FPGA Design Center, Enclustra GmbH
Silvio Ziegler, FPGA Design Center, Enclustra GmbH
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
Content

- **Enclustra GmbH**
 - Company Profile
- **FPGA Basics**
 - FPGA Architecture
 - FPGA Design Flow
- **The Case for FPGAs**
 - FPGA vs. ASIC
 - FPGA vs. DSP
- **Real-World FPGA Application**
 - Software Defined Radio
- **Example Project**
 - Motion Control
- **Conclusions**
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
Quick Facts
- Founded in 2004
- Located at Technopark Zurich
- Currently 8 employees
- Vendor-Independent

FPGA Design Center
- FPGA-Related Design Services
- Firmware (VHDL/Verilog)
- Hardware (incl. analog and digital interfaces)
- Embedded Software (for FPGA soft processors)

FPGA Solution Center
- FPGA Modules
 - Mars, Mercury and Saturn
- IP Cores
 - TFT Display Controller
 - Universal Drive Controller
 - Etc.
Content

- Enclustra GmbH
 - Company Profile
- **FPGA Basics**
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
FPGA Basics – FPGA Architecture
The Big Picture

- Field Programmable Gate Array
 - Regular array of configurable logic blocks
 - Many Flip-Flops available
 - Embedded RAM blocks
 - DSP blocks
 - Configurable I/O blocks
 - Dedicated clock management blocks
 - Configuration data stored in distributed SRAM cells
DSP blocks are used to implement fixed-point arithmetic operations

- Typically 18 x 18 bit multiplier
- 48 + 48 bit adder/accumulator
- Pre-adder for symmetric FIR filters
- Dynamic configuration via OPMODE
- Highly pipelined (configurable)
- Up to 600 MHz clock frequency
- Support for carry and adder chains
- ~4 .. 4000 per FPGA
- Up to 2400 GMAC/s per FPGA!!!
FPGA Basics – FPGA Architecture

Time Division Multiplexing (TDM)

- Register replication
 - State registers: Yes
 - Pipeline registers: No
 - BRAM/SRL can be used

- Advantages
 - Power
 - Area
 - Less hard macros

- Disadvantages
 - Longest path
 - Debugging

50 MHz

200 MHz
- **Floorplanning**
- Required for highest performance
- Grouping of components which belong together
- Keep floorplan in mind while designing
- Pipelining for long connections
- Placement of specific resources
- «Holes» due to hard macros
- Directions of carry chains
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
FPGAs can’t beat ASICs when it comes to:
- Low power
- Ultra small form factor
- Ultra high design security
- Ultra high volume

ASICs need volume to overcome the NRE penalty:
- NRE increase with each process shrink
- FPGA logic gets cheaper with each process shrink
- The break-even is moving towards higher volumes with each process shrink

Remote update and faster time to market become more and more important:
- FPGAs gain ground in the ASIC domain

FPGAs are often used for ASIC prototyping
The Case for FPGAs – FPGA vs. DSP

- DSPs are widely used in low-cost, low-power and low- to mid- performance systems
- DSPs suffer from their serial instruction stream when it comes to more complex systems running at high sample rates
- FPGAs can provide a performance boost of 10..1000 compared to DSPs for such applications (e.g. software defined radio).
- FPGAs even excel when compared in MAC/$ and MAC/W.
- Hard-macro CPU cores in the FPGAs take over traditional DSP tasks (e.g. complex protocol stacks), enabling single-chip high-performance signal processing systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FPGA</th>
<th>DSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>System performance</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Multi-channel architecture</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Many operations per sample</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Many conditional operations</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Floating point</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Absolute power consumption</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Performance FPGA vs. DSP

- Trend
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
 - Example Project
 - Motion Control
 - Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
- Software defined radio
 - Most of the signal processing of a RF receiver/transmitter is done in „software“

- Real-world application
 - 2.4 GHz RF receiver
 - 240 Msps sampling rate
 - Down conversion to 40 channels at 2 Msps each
 - Parallel baseband-processing of all 40 channels with a time division multiplexed datapath architecture
 - Channel filters
 - Demodulators (FSK, PSK)
 - Spartan-3A DSP low-cost FPGA
 - 126 multipliers running at 240 MHz clock frequency → 30 giga multiplications per second
 - Ported to Spartan-6 LX
 - TDM / Floorplanning
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
- **Example Project**
 - Motion Control
- Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
Example Project – Motion Control Specification

- Technical requirements:
 - Motion control module
 - Up to 4 DC or 2 stepper motors
 - Up to 2 BLDC motors in a later stage
 - CAN interface
 - Trajectory planner/integrator
 - 1..5 KHz position/velocity control
 - 10..100 KHz current control
 - 4 integrated FET H-bridges
 - Credit-card size

- General information:
 - Motion control platform for next-generation products
 - High-volume (> 10’000 units/year)

- Commercial requirements:
 - Manufacturing costs < X $
 - Available no later than day Y
 - Engineering costs are secondary
Example Project – Motion Control
Project Setup

- General project setup:
 - The customer is responsible for hardware design, production and embedded software
 - Enclustra is responsible for FPGA firmware and FPGA-related system design issues

- Team setup at Enclustra:
 - 1 project manager
 - 1 FPGA firmware engineer
 - 1 hardware consultant

- Team setup at the customer:
 - 1 project manager
 - 2 embedded software engineers
 - 2 hardware engineers
 - The strategic procurement department
 - The upper management
 - Many potential users of the motion control module
Example Project – Motion Control
Project Schedule (Basic Functions)

- System Design
- Hardware Support
- Hardware Design / Schematics / Layout
- Hardware Production
- FPGA Firmware
- Embedded Software
- Bring-Up, Integration & Test

Dates:
- Kick-Off
- System Design Freeze
- Schematics Freeze
- Layout Freeze
- First Prototypes
- Customer Acceptance

Parties:
- Customer
- Enclustra
- 3rd Party
Example Project – Motion Control System Design (1)

Altera Cyclone III FPGA

- SPI Master
- CAN IP Core
- Nios II CPU with FPU
- Register Bank
- Shared Memory
- Nios II DSP with FPU
- DC Motor Controller
- Stepper Motor Controller

- Communication, configuration, trajectory planning, I/O handling
- Trajectory integration, position and velocity controllers
- Current sensing and current controllers, commutation, PWM generation
Example Project – Motion Control
First Prototypes!

- **Bring-Up**
 - Power, clocks, FPGA configuration
 - Nios II booting and JTAG communication

- **First tests on hardware**
 - The first logged move!
Example Project – Motion Control
FPGA Resources over Time

FPGA Resources over Time

- BLDC Motor (FOC)
- Small Improvements
- Basic Functions
- New Features
- More New Features

FPGA Resource Limit

Time
Content

- Enclustra GmbH
 - Company Profile
- FPGA Basics
 - FPGA Architecture
 - FPGA Design Flow
- The Case for FPGAs
 - FPGA vs. ASIC
 - FPGA vs. DSP
- Real-World FPGA Application
 - Software Defined Radio
- Example Project
 - Motion Control
- Conclusions
 - Field Update
 - Outsourcing
 - Skills
 - How to Stand Out
FPGAs allow fast market entry thanks to their field update capability

This often leads to the fallacy that FPGA development does not require thorough verification („we can fix an error after it occurs“)

- This might be partly true for non security relevant applications running in static ambient conditions
- FPGA development actually IS done like this a lot more than one might think
- This often wrongs FPGA technology in the user’s minds, because there WILL be errors in this case

The development of a reliable FPGA system does not get by without thorough verification!

- Verification may include behavioral simulation and tests running on the hardware
Conclusions – Outsourcing

• **Make or buy – the case for outsourcing FPGA development**

 • Successful and efficient FPGA design requires in-depth knowledge of
 • Basic digital and analog circuit design, chip design, VLSI
 • HDL (VHDL/Verilog/etc.), FPGA architecture and tools
 • High-speed hardware design
 • Deployed algorithms, I/O standards, protocols, etc.

 • Many companies have extensive knowledge in their application area, but do not have the required expertise for successfully employing FPGA technology

 • Building up FPGA know-how is a lengthy and expensive process

 • Collaboration between application specialists and FPGA technology experts shows great promise for successful product development
FPGA jobs in engineering services - what skills do we expect?

Technical skills
- Basic digital and analog circuit design, chip design, VLSI (very important)
- HDL (VHDL, Verilog, etc.)
- Basic understanding of FPGA architecture and tools
- Basic understanding of DSP and SoPC

Soft skills
- Keen perception also for complex structures
- Good communication with customers and colleagues
- Ability to work in a team
- Flexibility for changing tasks quickly
How can an FPGA engineering company stand out from the crowd?

Focus on
- FPGA technology (don’t be a „general merchandise store“)
- Key application domains (e.g. DSP, SoPC, etc.)

Provide solutions, not only engineering resources
- FPGA modules as HW platform
- IP cores for complex building blocks
- Custom design for custom functionality
- System integration

Not only make the customer happy, but also make him successful
- What the customer initially wants is most often not what he really needs
Questions?

Oliver Bründler
Enclustra GmbH
bruendler@enclustra.com
Fon +41 43 343 39 40

Silvio Ziegler
Enclustra GmbH
ziegler@enclustra.com
Fon +41 43 343 39 46

Slides in PDF format:
http://www.enclustra.com/de/company/publications/